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Abstract: A computational approach that has been used extensively in the last two
decades for Hall thruster simulations is to solve a diffusion equation and energy
conservation law for the electrons in a direction that is perpendicular to the magnetic field,
and use discrete-particle methods for the heavy species. This “hybrid” approach has allowed
for the capture of bulk plasma phenomena inside these thrusters within reasonable
computational times. Regions of the thruster with complex magnetic field arrangements
(such as those near eroded walls and magnet pole pieces) and/or reduced Hall parameter
(such as those near the anode and the cathode plume) challenge the validity of the quasi-one-
dimensional assumption for the electrons. This paper reports on the development of a
computer code that solves numerically the 2-D axisymmetric vector form of Ohm’s law, with
no assumptions regarding the rate of electron transport in the parallel and perpendicular
directions. The numerical challenges related to the large disparity of the transport
coefficients in the two directions are met by solving the equations in a computational mesh
that is aligned with the magnetic field. The fully-2D approach allows for a large physical
domain that extends more than five times the thruster channel length in the axial direction,
and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to
the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the
momentum equations. A first series of simulations of two Hall thrusters, the BPT-4000 and a
6 kKW laboratory thruster, quantifies the significance of ion diffusion in the anode region and
the importance of the extended physical domain on studies related to the impact of the
transport coefficients on the electron flow field.

Nomenclature

B = magnetic induction field p = magnetic induction field unit vector
¢ = particle thermal (or random) velocity

D = mean atomic diameter for xenon

E = electric field

e = electron charge

F; = total specific force on ions

f = ion velocity distribution function

(fi )c = rate of change of f ; due to collisions with other

Brz =1 (z) component of magnetic induction field
unit vector

AA = surface area of a finite-element edge

At = time increment

€ = contributions to Ohm’s law from the electron
pressure and ion current density
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species

Jiey = 1on (electron) current density

kg = Bolzmann’s constant

L = length of the acceleration channel
In(A) = coulomb logarithm

m;) = mass of ion (electron)

nje) = number density of ion (electrons)
n, = number density of atoms (neutrals)
0 = normal unit vector

n = electron-impact ionization rate
= total ion generation rate for collisions that produce

1328
1

ion “I” from another heavy particle
Pie) = ion (electron) pressure
i = ion charge (eZ)

gy = permittivity in vacuum

& = ionization potential of species “s”
1 = total or effective electrical resistivity

1 = electron-ion (e-i) electrical resistivity

Mo = classical electrical resistivity

K. = electron thermal conductivity

A;; = ion-ion collision mean free path

Ain = ion-neutral collision mean free path
associated with charge exchange

Ann = neutral-neutral collision mean free path
o = classical electron mobility

vg = Bohm collision frequency

v, = electron-ion (e-i) collision frequency

v,, = total electron-ion (e-i) collision frequency

Q" = thermal heating

R = ion (electron) drag force density

r,z = radial and axial coordinates

F,Z = unit vectors in radial and axial directions

Ven = electron-neutral (e-n) collision frequency
v! = electron-neutral (impact) ionization rate

Vew = €lectron-wall (e-w) collision rate
vis = collision frequency of ions with species “s”

Tie) = ion (electron) temperature . .
oy, = lon-neutral charge-exchange collision cross

t = time

u;) = mean velocity of ions (electrons) section . . .
u, = mean velocity of atoms T. = coulomb collision relaxation time for
electrons

ur; = ion thermal speed (2kgT;/m;)"
v = particle velocity
Z = ion charge state

7, = thermal equilibration time between electrons

7;= coulomb collision relaxation time for ions
¢ = plasma potential

¥ = magnetic-field potentail function

v = magnetic-field stream function

. = electron cyclotron frequency

Greek Symbols
o = factor that controls the magnitude of the Bohm
collision frequency

I. Introduction

HE numerical simulation of Hall thrusters spans more than two decades. In fact, the first theoretical models of

the partially-ionized gas in Stationary Plasma Thrusters (SPT) were reported in the 1970s by Morozov and
colleagues.'** Hirakawa*>° developed one of the first numerical models of an SPT in three-dimensions. Electrons
and singly-charged ions were simulated using a Particle-In-Cell (PIC) scheme that was combined with a Monte-
Carlo Collision model (MCC). The electric field was determined by solving Poisson’s equation. A computational
approach that has been used extensively in the last two decades or so to simulate the partially-ionized gas in Hall
thrusters is to solve the fluid (inertia-less) momentum and energy conservation laws for the electrons but use
discrete-particle methods to track the evolution of the heavy species. This “hybrid” approach allowed for the capture
of bulk plasma phenomena and ion kinetics in the thruster within reasonable computational times and, as a result,
gained considerable popularity. One of the first models to follow this approach was developed by Fife and Martinez-
Sanchez.” The model, dubbed “HPHall” (Hybrid-PIC Hall), uses a PIC-MCC method for ions in 2-D axisymmetric
geometry and it appears that it was the first to reproduce the so-called breathing mode oscillations in Hall thrusters,
in two dimensions.” Interpretations of these oscillations were provided (around the same time) by Fife and Martinez-
Sanchez using an idealized 0-D model,”® and by Boeuf and Garrigues’ using a 1-D time-dependent model with a
hybrid treatment of electrons and ions. In Fife’s work, a model for anomalous electron mobility was employed in the
original (SPT-70) simulations that was based on Bohm’s scaling'® for the anomalous (or neoclassical) collision
frequency, vg~B/16. The precise numerical value used in the simulations was guided by experiments. Since the late
90s HPHall has been used to simulate several other thrusters and, naturally, its numerical and physical models have
undergone several improvements and extensions. Recently the model was upgraded to HPHall-2"" by Parra and

™ All simulation results presented in this paper that are termed as “HPHall” results were generated with the HPHall-2 version of the code as
modified at the Jet Propulsion Laboratory [Refs 13, 14].
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Ahedo."" Additional algorithm advancements including a new erosion sub-model were completed at the Jet
Propulsion Laboratory.'>'*!* A similar hybrid approach has been followed by Fernandez and Cappelli that led to the
development of a similar model of Hall thrusters and is reported in Refs 15,16. Hagelaar, et al.'”'® also followed a
hybrid approach but instead of Bohm diffusion used empirical parameters to account for additional anomalous
electron transport'’ and energy loss phenomena. It is interesting to note that despite the apparent popularity of the
hybrid approach in recent years, the earliest attempts to model the heavy species followed purely hydrodynamic
formalisms™ (also reported in Ref. 21). A hydrodynamic approach for all species in the thruster was also applied
later in 2-D geometries by Keidar and Boyd.*

Because the fundamental principle behind the acceleration of ions in Hall thrusters is based on operating the
accelerator at high electron Hall parameter (€2.>100), the diffusion of heat and mass for the electron flow in the
direction parallel to the magnetic field is much greater (by ~Q.%) than that in the perpendicular direction for most of
the channel region. This leads to a simplification, the so-called quasi-one-dimensional approximation: streamlines of
the magnetic vector field are also lines of constant electron temperature and constant “thermalized” potential ¢ =¢-
Teln(n,). Numerically, the assumption allows for the solution of the plasma potential and electron temperature in a
(quadrilateral) computational cell that is bounded by two adjacent lines of force rather than one with arbitrary
dimensions. This is the approach followed in HPHall. Modeling regions of the thruster with complex magnetic field
arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the
anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons.

In this paper we present a 2-D computational model of the partially-ionized gas in a Hall thruster that employs
the full vector form of Ohm’s law, with no assumptions regarding the rate of electron transport in the parallel and
perpendicular directions of the magnetic field. The model is a descendant of OrCa2D, a 2-D computational model of
electric propulsion hollow cathodes that employs a mix of implicit and explicit algorithms to solve numerically the
conservation laws for the partially-ionized gas in these devises.”** Numerical diffusion due to the large disparity of
the transport coefficients in the two directions is evaded by solving the equations in a computational mesh that is
aligned with the magnetic field. The employment of field-aligned meshes is a long-standing computational approach
(dates back more than 15 yrs) for simulating highly anisotropic plasmas, and is widely used nowadays especially by
the sustained fusion energy community”~**"** (e.g. tokamak divertor technologies), and for a variety of space
plasma problems dealing with the propagation of shear Alfven waves.” Also, more recently, field-aligned meshing
was employed in early versions of a 2-D model of the discharge chamber in an ion engine.’ It was found that the
complexity of the magnetic field near the ring cusps made the field-aligned-mesh generation technique prohibitively
sensitive to small changes in the magnetic field strength or geometry. This made the application of the model for the
design and study of a wide range of thruster arrangements cumbersome, so the field-aligned mesh was eventually
replaced with a simpler orthogonal mesh.*!

The fully-2D approach followed here allows for a large physical domain that extends more than five times the
thruster channel length in the axial direction, and encompasses the cathode boundary and the axis of symmetry. The
main motivation is to extend the solution to regions of the Hall thruster that otherwise could not be modeled
accurately due to the quasi-1D assumption. The model also incorporates a new algorithm for the solution of the
(collisionless) neutral gas density, based on line-of-sight formulations, that eliminates the inherent statistical
fluctuations of conventional particle methods. The approach for the neutral gas is presented in a companion paper™*
and will not be described here. The ions are modeled using a fully hydrodynamic approach that, in addition to the
inelastic collision terms associated with the ionization, retain both the ion pressure and the ion-neutral charge-
exchange “drag” in the momentum equation.

The paper is organized as follows. Section II provides a description of the physical models and numerical
methodologies for the ions (II.A) and electrons (I1.B). Section III presents results from numerical simulations of two
thrusters, the BPT-4000 and a 6 kW laboratory Hall thruster. The numerical simulations of the BPT-4000 (III.A)
have been performed mainly for benchmarking purposes and the results are compared with those from recent
HPHall simulations of the same thruster."® Preliminary studies to better understand the impact of the imposed Bohm
collision frequency in the BPT-4000 benchmark simulations motivated an extended investigation in the 6 kW
laboratory thruster; the results from these studies are presented in III.B. For the sake of brevity when comparing
results with those from HPHall we refer to the newly-developed model as Hall 2De (with “2De” referring to
electron flow in two dimensions).
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II. The Computational Model

The computational region in Hall 2De extends several channel lengths (L) downstream of the thruster exit. A
schematic of the physical domain with naming conventions for the various boundaries are provided in Figure 1. The
typical extent of the computational region in an HPHall simulation is also shown for comparison. lons are treated as
an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization
collisions in the momentum equations. Although electron-impact collisions that lead to the ionization of an atom can
be frequent by comparison to its transit time inside the channel, for most Hall thrusters, collisions between the
atomic species (“neutrals”) are rare. A popular numerical method for simulating the flow of neutrals in Hall thrusters
is PIC combined with DSMC to account for ionization collisions. An inherent disadvantage of particle methods like
PIC is the noise that is generated due to the particle statistics, which can be reduced by including more particles but
at the expense of increased computation time. The method followed in Hall 2De is based on widely-used methods to
model problems such as photon transport in radiation heat transfer problems® and is advancement over a previous
algorithm that has been used to model regions of collisionless flows in electric propulsion hollow cathodes.”*** The
method assumes that particles striking a surface are fully accommodated and that the fraction of those particles that
is re-emitted follows a cosine distribution. The particle flux on any given surface depends then on the view factor
between that surface and all other surfaces that emit particles. Because the basis for computing particle distributions
in a region bounded by emission surfaces are the view factors the problem then becomes essentially a problem in
geometry. The view factors can be computed at the pre-processing phase of the simulation thereby contributing an
insignificant amount to the total computation time. The approach for the neutral gas is presented in a companion
paper’> and will not be described here. A 2-D form of Ohm’s law and the electron energy equation are solved for the
electrons and the equations are discretized on a field-aligned computational mesh. Ohm’s law is combined with the
current conservation equation to yield the plasma potential. The boundary conditions related to the sheath along the
dielectric walls, and conditions for the remaining boundaries are provided in ensuing sections.

e l
N horizontal far-plume
cathode-to-plate ~- cathode boundary boundary
plume boundary —
~
~
e4—— dielectric-wall vertical far-plume
boundary boundary
anode —¢ 1
boundary = »—— extent of the HPHall
N ,v' computational region
ﬁ/
< — dielectric-wall
- — boundary
axis of symmetry
cathode boundary _/
—

Figure 1. Schematic of the computational region and naming conventions for the boundary conditions.

A. lons

1)  Physics model

Because the treatment of ions, specifically the computational methods employed to determine their evolution
inside the acceleration channel, has been wide-ranging due largely to the assumptions made on their characteristic
collision scales, we outline our estimates of the relevant characteristic sizes for the ions in some detail. The two
characteristic times for relaxation to a fluid, t, for electrons and t; for ions, are:

oy e )

¢ n,Z’%¢* InA
(I1-1)
. 127:3/2802@(1(]31)3/2 Zmi 1/2 Tl 3/2 x,
T=(vi) = a4 =l || 5z
n,Z¢" InA m, T, V4
4
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(with temperature expressed in K). Hereon, our convention will exclude the brackets from mean values of the
collision frequency, that is v=<v>. For slow-moving ions the (Spitzer) thermal equilibration time between singly-
charged ions and electrons when T;<T. may be approximated by

~ T,
2m (1I-2)

Using estimated values in the 6 kW laboratory Hall thruster the ion transit time t,=L/u; can range approximately
from (0.03 m)/(2x10* m/s)=1.5 us for those ions that are accelerated downstream of the channel to (0.01 m)/(5x 10
m/s)=10 ps for those generated near the anode region and lost to the walls. In comparison, the thermal equilibration
time between electrons and ions ranges 0.03-0.5 s. inside the channel. This implies that the ions remain “cold”
relative to the electrons. The (thermal) mean-free-path (mfp) for ion-ion collisions

Ay =upTs (I1-3)

is plotted in Figure 2-left along the middle of the acceleration channel of the 6 kW Hall thruster for various
(assumed) values of the ion temperature. The profiles have used the HPHall-computed values'* for the plasma
density and electron temperature. It will be shown later that the ion density may in fact be substantially higher in the
anode region than the values predicted by HPHall, which suggests even smaller collision mfps for ions in this region
than those plotted in Figure 2-left. Also, recent Laser-Induced Fluorescence measurements of Xe" inside the 6 kW
Hall thruster have shown that ions follow very closely the equilibrium distribution function,”® which further
strengthens the continuum assumption for the ions in this region. Figure 2-right depicts the charge-exchange
collision mfp for ions with neutrals as estimated by,

Ay, =(o,n, )" (11-4)

mn
and is plotted for two values of the charge-exchange cross section oj,: 50 A? and 100 A’ Based on the
measurements of Miller et. al.,** the two values cover the range of typical ion energies attained in the channel, <1

eV to 300 eV, with the higher value of the cross section representing the lowest energy ions. For comparison, the
characteristic mfp for self collisions between neutrals

Ao =[mn, D22 ), (I1-5)

is also plotted in Figure 1-right using a mean atomic diameter for xenon of D=2.6 A.*>
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Figure 2. Collisions mean free paths at the middle of the acceleration channel in the 6 kW laboratory Hall
thruster. Left: Ion-ion coulomb collisions for different values of the ion temperature. Right: Ion-neutral
collisions that lead to the exchange of charge and neutral-neutral collisions.
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Based on the estimates in Figure 2 the approach followed here is to treat ions as a fluid, and include charge-
exchange collisions as a contribution to the (elastic) friction or “drag” force, whereas neutrals will be simulated
using a collisionless approach.” It is noted that the addition of charge-exchange collisions can become increasingly
important in the anode region since the electric force can be negligibly small there as by suggested by recent
measurements of the plasma potential.*®

The formulations that lead to the momentum conservation law begin with Boltzmann’s equation for the
distribution function of ions fi(t,r,v)

thwv-v, f+F-v, f =(f), (11-6)

where F; is the total specific force (force/mass) on the ions containing the electric and Lorentz forces. The term on
the right expresses the rate of change of the distribution function as a result of collisions between ions and species
“s” and, in principle, it may be composed of both elastic and inelastic components. By taking the product of Eq.
(I1-6) with the ion momentum m;v; and integrating over velocity space one obtains the conservation law for the
transport of momentum:

%(nm(v))i +V,- (nm(vv>)i —-nm, <(F -V, )V>i = Jmiv( f.i )C dv (II1-7)

Recall the definitions of the relevant velocities: v is the particle velocity (with respect to the laboratory frame of
reference), u=<v>=n"'[vfdv is the mean particle velocity and e=v-u is the particle thermal velocity. Hereinafter, the
subscript from the spatial operator V, shall be excluded. Accordingly, the various terms in Eq. (II-7) in the absence
of the Lorentz force become

£ () == (nmna),

ot

V- (nm< vv>)i =V. (nm<cc> + nmuu)i
nimi<(F . Vv)v>i =n,q,E

“-miv(fi )cdv =R,

(11-8)

The drag force density R;, defined in terms of the collision term on the right in Eq. (II-7), may be broken up into two
parts to distinguish the momentum exchange between species by elastic collisions from that by inelastic collisions:

(I1-9)

R, =Imiv(fi)cdv +Imiv(fi)cdv

elastic inelastic

(3% 1}

Because the dynamics of the direct and inverse elastic collisions are the same the term for collisions with species “s

[Tt

may be may be approximated in terms of a mean collision frequency v between ions and other species “s
I m, V( f )C dv,

The momentum conservation law for ions may therefore be expressed in conservative form as follows:

~ _Znimivis(ui _us)' (11-10)

elastic n
s#i

%(nmu)i +V. (nmuu)i =qnE-Vp, +R, II-11)

where we have neglected the viscous terms in the pressure tensor p=nm<cc> and have assumed that p;/=p;l (with I
being the unit or delta tensor). Equation (II-11) may be combined with the ion continuity
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8(nm)

: +V~(nm<v>)], = Imi(fi)cdv

ot (I1-12)
=mn
to yield the momentum equation in non-conservative form
nimi[a;i + (“i 'V)“i} =qnE-Vp, +R; —umn
(II-13)
Du,
n;my Dt ~ qiniE_znimiVis(ui _us)_vpi +S,
where S; includes all the inelastic contributions to the transport of ion momentum,
S, = [my(f ) dv—-mui. (II-14)

It is noted that there are two terms in S; and they are mathematically distinct. The first appears as a direct
consequence of taking the first moment of Eq. (II-6) to obtain the conservative form of the momentum equation
(II-11). The second term appears because Eqs (II-11) and (II-12) were combined to obtain the non-conservative form
of the momentum equation (II-13). For a quasi-neutral plasma with only singly-charged ions and no recombination,
S; takes the simple form
S, =mu,n—muh=-mn.v, (ui - un) (@-13)

and, assuming only charge-exchange collisions for the elastic contributions in Eq. (II-10), Eq. (II-13) is simplified as
follows:

n,m, ]1);[‘ =qnE-Vp, —n;m, (vin +vl Xui ~u,) (11-16)

to yield the ion velocity field. Multiply-charged ions may be accounted for by following the same formulations
outlined above while including the relevant ionization collision frequencies for the higher charge states. The last
term on the right of Eq. (II-16) may in fact be expressed more generally in terms of an “ion generation rate” that
includes both charge-exchange and electron impact-ionization collisions as follows:

_mzﬂi’—ﬁ (u; —u;) (1-17)

i'<i

with i1 denoting the direction of the reaction. For example, for collisions that generate singly-charged ions from
neutrals, Xe->Xe", then i'’=0 and i=1 and so forth and so on. In the present model we account for the following
reactions listed in Eq. (II-18) with all collision cross sections specified based on available data. The drag between
multiply-charged ions Nnizmv_z(uiz - uiz“) has not yet been included in Eq. (II-16).

ivii

++

e +Xe—o2e +Xe", e +Xe—3e +Xe, e +Xe—4e +Xe

e +Xe" »2e +Xe"
(II-18)

+++

e +Xe" 52 +Xe

Xe+Xe" > Xe" +Xe, Xe+Xe™" - Xe™" +Xe

For the results presented in this paper a constant temperature of 500 °C has been assumed for the ions. Although
no sensitivity calculations have been performed yet to assess the impact of the assumption on the solution, it is not
expected to have a significant effect since the ion temperature affects only the ion pressure and the ion-neutral
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collision frequencies. On-average the latter has a square-root dependence on the temperature and the ion-pressure
gradient force is negligible compared to the other forces; this will be further quantified in an ensuing section. Also,
in the case of the heavy species with different masses, m in expression (II-17) would be proportional to the reduced
mass, mym;/(m;~+my;), but since here only xenon ions and atoms are present m denotes the mass of the heavy species.

The system of conservation laws for the ions is closed with conditions specified at all boundaries in Figure 1. At
the anode and dielectric-wall boundaries the Bohm condition is prescribed for the speed with which the ions exit the
physical domain (i.e. at entry to the sheath). At the plume boundaries the ions are allowed to flow out of the system
freely (gradients of the two velocity components are set to zero). Reflection boundary conditions are set at the axis
of symmetry. Presently no ion flux is specified to flow from the cathode boundary into the physical domain.

2)  Numerical approach

Equation (II-16) is solved using a first-order upwind scheme for the velocity field at the vertices, u,.. Since the
simulation domain is comprised of quadrilateral computational cells of arbitrary shape as shown in Figure 3-left the
scheme accounts for the surrounding eight vertices (open circles) to determine the upwind direction. Because all the
conservation laws in Hall 2De are discretized using finite-volume differencing, scalars (such as the number density
ng.) are computed at the cell centers and vectors (such as forces Feq4, and fluxes) are computed at the cell edges. The
ion momentum equation is the only conservation law solved in non-conservative fashion so it requires that both
vectors and scalars be known at vertices. Referring to Figure 3-middle and -right, the algorithm uses bilinear
interpolation at each vertex for edge-centered (middle) and cell-centered quantities (right) using the quadrilateral
defined by the dashed lines. Equations (II-12) and (II-16) are marched explicitly from time t to yield new values for
the ion density and velocity field at t+At.

Figure 3. Left: The ion momentum equation is solved in non-conservative form for the velocity field at the
vertices using a first-order upwind scheme that takes into account the contributions from a maximum of eight
surrounding vertices. Middle: Bilinear interpolation is used to define forces at vertices using their primitive
values at the cell edges. Right: Bilinear interpolation is used to define scalar quantities at vertices using their
primitive values at the cell centers.

A. Electrons

1)  Physics model

The electron momentum equation in the absence of the viscous terms and assuming p.=p.l is given in vector
form by:

n,m, []))“te =—en, (E +u, x B) -Vp.+R, (I1-19)

As in the case for ions, the friction force Re/n. for electrons is related to the integral of the collision term in the
electron distribution function and the electron momentum. For the case of a near (or “quasi”’)-Maxwellian
distribution function in an anisotropic, classical plasma (i.e. with no random fluctuations in the fields) R, may be
approximated as follows, assuming u>>u,:

Re ~ _neme |:Z Vei (ue - ui ) + Venuej| = e_lme (Vei + Ven )je + (CZ* )71meveizzji (II'ZO)
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with the electron and ion current densities defined as jo=-en.u. and ji=qnju;=eZn;u; respectively, and the total
electron-ion (e-i) collision frequency given by

— n.Z'e'InA . -
- C Z'=n>nz (I1-21)

Ve:i 3(275)3/2802 \/E(kBTe )3/2

Unless otherwise noted all references to “e-i collision frequency” in the remainder of this paper shall imply the
definition in Eq. (II-21). If the electron inertia can be neglected then one obtains the vector form of Ohm’s law

. . A V e <
E =nj. + e 2J. xP— —eg + Nl (11-22)
where
m, (v, +v,,) myv, 4 B| - 1 .
— € €1 en = c ¢l — B/B Q — = - Z . II-2
T]o eZHe T]el ezne ﬁ 0 eneno -]1 Z Z Jl ( 3)

In the frame of reference of the magnetic induction field with “//” and “L1” denoting parallel and perpendicular
components respectively, the components of Eq. (II-22) may be written as

- ) \YJ
+Neidiy E = no(l + Q02 )Ju - e;pe

€ €

. _V,p.
E, =MoJey — .
en

+ Nt (11-24)

It is noted that in the absence of the ion velocity in the electron drag force density (Eq. (1I-20)), Eqs (1I-24) take a
form that is suitable for problems involving electron diffusion in weakly-ionized plasmas

- ViPe . _enyp V.p.
Jen = eneMO(E// + e/I/lJ Jeo = 1+QO2(EL + e;j (1I-25)
e 0

The form of Ohm’s law given in Eq. (II-25), using the electron mobility p, instead of the resistivity (note
po=1/enenp), is the form that has traditionally been implemented in Hall thruster models such as HPHall.” Equations
(II-25) imply the approximation u.>>u; (in addition to us>>u,) and thus R.r-n.m.vou. with the total collision
frequency “v,” representing the contributions from classical collisions of electrons with all other species. It has also
been suggested that the diffusion of electrons in Hall thrusters is enhanced in a non-classical manner, e.g. by plasma
turbulence, and attempts to capture this enhancement in numerical simulations with HPHall have been made through
the use of an effective collision frequency’ based on Bohm’s 1/B scaling for the cross-field mobility.'® That is, Re~-
nem, (vo+vg)u, where,

Vg T o, (II-26)
with o being a constant. During their azimuthal drift electrons may also collide with walls and this has been
proposed (originally by Morozov>") to be one more process that affects the transport of electrons in the acceleration
channel. In numerical simulations of Hall thrusters this additional transport mechanism has been accounted for
through the addition of another effective collision frequency v.,. Because this frequency is found to be important
only in regions where the quasi-1D assumption is valid the approach used to determine it is the same as that used in
HPHall."” Accounting for all transport mechanisms effective values of the electrical resistivity and the Hall
parameter may be defined as follows:

me (Vei + Ven + Vew + VB)

QO Eﬂ.
e’n, ¢ enn

n (11-27)
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Unless otherwise noted, all references to the “Hall parameter” in the remainder of this paper shall imply the
definition in Eq. (II-27). In Section III a series of numerical simulations will be presented that compare results
obtained by Hall 2De with those obtained recently by HPHall for two Hall thrusters, the BPT-4000 and the 6 kW
Hall thruster.'*'"* In these simulations the HPHall solutions incorporate a spatially varying o that is guided by
plasma measurements and by the observed operational characteristics of the thrusters (such as discharge current and
thrust). The presence of turbulence, its real effect on electron transport and the question of whether it can be
quantified using Bohm’s formula has been an ongoing area of research. As a consequence, in models like HPHall
the variation of a from one thruster simulation to another is not based on first principles, which presents the biggest
obstacle in advancing such models to fully-predictive design tools for Hall thrusters.
The overall system of conservation laws is augmented with an equation for the conservation of current

V-(j.+i)=0 (11-28)

and the equation for the electron temperature (expressed in eV)

3 oT . 5... 3 . . 3 T
—en.—*=E-j+V:|=Tj.+x -VL |-—=TV-j—>ne e +-T [+Q. - 11-2
2 € at Je (2 eJe (5 e] 2 (5 -]e ZS: S ( S 2 ej QE ( 9)

The last term on the right represents the energy exchange per unit time between electrons and the heavy species®’
due to deviations from thermal equilibrium and is proportional to n.(m./m)ve(T.-T;) for ions and ne(me/m)vey(Te-T,)
for neutrals. In Hall thrusters it is usually a small contribution to the total electron energy content.

The equations for the electrons are closed with boundary conditions at all surfaces in Figure 1. As it will be
shown in the next subsection, Eq. (II-28) is in fact combined with Eq. (II-24) to yield the plasma potential, and
requires boundary conditions either for the plasma potential, its gradient or for the current density. For all dielectric-
wall boundaries a zero-current condition is imposed, j=j;. At the anode a Dirichlet condition specifies directly the
voltage at its discharge value. For both simulation cases that are presented in this paper this value is 300 V. A
Dirichlet condition is also imposed at the cathode with a value of 0 V. For the electron energy the convective heat
loss follows the formulations of Hobbs and Wesson (H&W)*® using a fit* for the H&W solution of the sheath
potential as a function of the secondary electron yield (SEE). The Maxwellian-averaged SEE is also specified using
a fit to data for the dielectric material used in each thruster. A Dirichlet condition for the electron temperature is also
imposed at the anode.

2)  Numerical approach

The large disparity (>2 orders of magnitude in regions with high values of the magnetic field) that exists in the
electron transport equations in the perpendicular versus the parallel directions requires special treatment. One
approach is to solve the equations for electrons only in the perpendicular direction; this quasi-1D approach is
followed by HPHall and other similar models of Hall thrusters. This evades the numerical difficulties associated
with the resolution of transport in both directions and is an excellent approximation for most of the acceleration
channel and near-plume regions. To extend the solution to regions in the far plume and/or to resolve regions of the
magnetic field with complex topology requires a 2-D solution of the electron transport equations. To accomplish
this, the approach followed here is to solve the equations in the frame of reference of the magnetic field, in two
dimensions (f=p f+p,z). To diminish excessive numerical diffusion all equations are discretized in a
computational mesh that is aligned with the magnetic field. In this section the general approach is outlined using Eq.
(II-28) as the example equation.

The plasma potential in Hall 2De is solved by combining the equation for current conservation and Ohm’s law
into one equation. Then for a single quadrilateral computational cell with volume AV the divergence theorem allows
for the following discretization:

4

V. jt+AtAV — z(jt+At ﬁAA)

edg
edg=1

3 [ bbbl

10
The 31st International Electric Propulsion Conference, University of Michigan, USA
September 20 — 24, 2009

(11-30)



The dot product in Eq. (II-30) at a edge may be expanded as

|:(jt+At . ﬁﬁ _ ﬁ % (B 9 j)t+At:| . T]_1( At 81)- ! (I1-31)
where
n=n, +n,
o= F+B Z)-n+—¢ r—p,z)-n
. =B.(B.F+B,2) Lo (B.F-B.2) (11-32)
P,

n, =B,(B.F+B,2) A- (B,f-B.z) A

1+Q°

and E=-V¢. The remaining terms in Eq. (II-24) involving the electron pressure and the ion current terms are
included in the term “g.” Equation (II-30) is solved implicitly for the plasma potential. It is noted that a
simplification occurs in Eqs (II-32) when the computational mesh is aligned with the magnetic field, as illustrated in
Figure 4. Numerical diffusion due to the disparity between the terms with and without Q, is reduced by assuming
that cell edges are exactly either parallel or perpendicular to the magnetic field lines. The accuracy of the solution is
then dependent upon the extent of the spatial deviations of the mesh from the true lines of constant potential and
stream functions y and . Here, y and y are the commonly-used set of conjugate harmonic functions satisfying the
Cauchy-Riemann conditions for the radial and axial components of the magnetic field.

0 1

- _ N A B, s ns
edgeis parallel { i 7ﬁr(B]r+ﬁz£)/g+ 1+Qe: (Bzr Brl)/lz:

0
toy-line R . B, N R
N e )

1 0

_ N A B, s ns
edgeis parallel{ ! B,(B,V+B,Z%+1+ch (B,r B‘Z)/lz:

1
to x-line . N B, . R
O e )

=1l
1]

=
[l

nz

Figure 4. Each edge of a computational cell in Hall 2De is closely aligned with either a line of constant
potential function (y) or a line of constant stream function (y).

Figure 5. Left: A set of lines of constant stream function (y) in blue (streamlines of the magnetic field)
overlaid by lines of constant potential function (¥) in red, in the vicinity of the acceleration channel in the 6
kW Hall thruster. Right: corresponding finite-element computational mesh.
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The computational mesh is generated first by superimposing lines of constant y and y onto the computational region
using commercially available graphics software (Figure 5-left). The computational region boundaries are specified
by line segments that connect points used to specify the geometry of the region. Then the spatial locations of points
along each line, generated by integration in space along each streamline, are extracted. Each pair of adjacent points
along a x-line (or a y-line) defines a line segment. A mesh algorithm then searches for the intersections between all
line segments over all y-lines, y-lines and boundary lines. Each intersection defines a vertex location and these
vertices are then used to generate the finite element mesh shown in Figure 5-right. The equation for the electron
temperature is solved in a semi-implicit fashion. The thermal conduction term is implicit whereas all other terms are
evaluated at the previous time-step as expressed by Eq. (II-33).

t+At t
3 LT

t
Sen = —V-(K;-VT;*A‘)z[E-je+V~(§Tejej—3T3V-je—2ﬁse[as+gTe)+Qz} (I1-33)

III. Numerical Simulations

A. Benchmark simulations with the BPT-4000

As a first series of Hall 2De algorithm tests we performed comparisons with existing numerical simulation
results'® obtained by HPHall for the BPT-4000 operating at 4.5 kW. The operational characteristics of this thruster
as used in the numerical simulations are outlined in Table 1. The simulations employed the same spatial variations
of the Bohm collision frequency factor a in the acceleration channel and near-plume regions as in the HPHall
simulations. It is noted that in those simulations the factor was significantly lower inside the acceleration channel
(0=0.035) compared to the plume region (a=1.0). Moreover, beyond the effective HPHall computational region,
defined by a near-anode magnetic-field streamline and a near-cathode streamline (as defined by the two streamlines
in black in Figure 6) both the Bohm collision frequency and the Hall parameter are set to zero. For this first series of
algorithm tests the spatial variations for vg and €. in Hall 2De is the same as in HPHall but with a slightly more
gradual reduction to zero (using a Gaussian Hall parameter, Q,
function) downstream of the cathode field line. The
one-on-one comparisons along a line that crosses
the middle of the acceleration channel are shown in
Figure 7. The benchmark simulations have also
used the same model for the wall collision
frequency Vey.

The comparisons in Figure 7 and the 2-D
contour plots in Figure 8 show similar solutions but
with some marked differences. The overall heating .
of electrons appears to be in close agreement
between the two solutions, which is expected since
the peak electron temperature and its spatial
variation near this maximum is driven mainly by
resistive heating that is dominated by the Bohm
collision frequency. By comparison to the other
collision frequencies, vp is at least one order of
magnitude higher at the exit and near-plume regions
where the maximum in the temperature is z

fsomputed. Negr the ano.de the electron temperature g igure 6. Contours of the Hall parameter as computed by
in Hall 2De is determined largely by the anode gpHall in the 6 kW Hall thruster simulations." Near-
Dirichlet boundary condition (currently specified as  apode and near-cathode streamlines define the effective

1 eV) and the surrounding diclectric-wall Hppay computational domain beyond which . and vy

Cond?ti"gs’ ,WhiCh prescribe  the sgme H&W are set to zero. The same approach is followed in the
solution™ as in HPHall for the convective heat 10ss  ppT_4000 simulations."

of electrons in the sheath.
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Table 1. Operational characteristics used in the numerical simulations of the BPT-4000 at 4.5 kW.

Thruster parameter Value
Discharge (or anode) current (A) 15
Discharge voltage (V) 300
Anode mass flow rate (mg/s) 15.5
Cathode mass flow rate (mg/s) 1.55
1000 1.E+09 2205
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—o-Hall2De —e—e-i (Hall 2De)
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Figure 7. Axial slice plots from the benchmark numerical simulations of the BPT-4000. The plots compare the
solution obtained by HPHall"® with that obtained by Hall 2De at the middle of the acceleration channel. In
these benchmark simulations the Hall 2De simulations enforce a reduction of the Bohm collision frequency
and of the Hall parameter beyond z/L.~1.5 to emulate the approach followed in the HPHall simulations.

A notable distinction between the solutions for the electron number density and plasma potential is evident in the
anode region. This is illustrated in Figure 7 (bottom), Figure 8 (top), and is more evident in the axial profiles of
Figure 9 (left). Hall 2De computes a higher plasma density in this region with values for z/L.<0.2 exceeding one
order of magnitude those obtained by HPHall. A comparison of the terms in Eq. (III-1) show that the anode region is
dominated by ion diffusion since this is where the electric field is negligible. It is noted that as part of the inherent
assumptions associated with the PIC simulation of ions the ion drag terms (numbered as “IV” in Eq. (III-1)) are not
accounted for in HPHall. The ion pressure is also excluded in HPHall and the Hall 2De simulations confirm this to
be a good approximation for the assumed ion temperature. The comparison of all the ion momentum terms in steady
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state is shown in Figure 9-right. The effect of mesh resolution on the solution has not yet been quantified but, if of
any significance, this is expected to influence the solution only in the very-near anode regions where the mesh is
coarsest.
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Figure 8. Contour plots from the numerical simulations of the BPT-4000. The plots compare the 2-D
solution' obtained by HPHall (left) with that obtained by Hall 2De (right). For these benchmark simulations
Hall 2De and HPHall use approximately the same model for the spatial variation of the Bohm collision
frequency. The arrows point to the maximum radial extent of the HPHall computational region. Top:
electron number density. Bottom: plasma potential.
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A related effect is associated with the variation of the electric field in this region where measurements*’ have
suggested little to no variation of the plasma potential (i.e. E,=0). Similar comparisons as those performed for the
ion momentum may be carried out for the dominant terms in Ohm’s law, namely the resistive term and the electron
pressure. These comparisons suggest that the higher plasma density reduces significantly the importance of these
terms in this region such that any differences between them (the numerator in Eq. (I1I-2)), that would otherwise
generate a finite electric field, are reduced. The numerator in Eq. (III-2) is reduced further by comparison to the
HPHALII solution since the total classical collision frequency is higher (first term) and the density gradient is lower
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(second term). The e-i collision frequency is found to be higher in the near-plume regions as well, in part due to the
higher plasma density there but largely as a result of accounting for the multiply-charged ions in Eq. (II-21) (through
Z"); more notable however in the Hall 2De results is its continued rise downstream of the HPHall computational
region. This rise is largely due to the colder electron temperature since the frequency is proportional to T,

. 2
E ~ 1 + Q 2)' _ vLpe - JeLB /me(vei + Ven ) — Tevine I 2
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Figure 9. Comparison of terms in the ion momentum conservation law for singly charged ions (Eq. (III-1))
along the mid-channel line of the BPT-4000 for the steady-state benchmark simulation case. The profiles on
the right identify the anode or “ion-diffusion” region (z/L<~0.3), the ionization region (0.3<z/L<0.6) and the
ion-acceleration region (z/L>0.6).

The capacity to resolve this rise due to Hall 2De’s extended computational region prompted a series of
preliminary simulations to better understand the response of the plasma, specifically that of the e-i collision
frequency, since it dominates over both the electron-neutral (e-n) and the electron-wall (e-w) frequencies beyond the
ionization region. Figure 10-left shows the computed e-i collision frequency for three different values of the
maximum Bohm factor: o=1.0, 0.2 and 0.05. It should be clarified that we use “maximum” here because, as also
noted earlier, o is varied in the physical domain: for the BPT-4000 benchmark simulations in Figure 7, a(=a. in
Ref. 13)=0.035 inside the channel, a(=a., in Ref. 13)=1.0 in the near-plume and for z/L>~1.5 a, is reduced to zero.
So, when we decrease the Bohm factor in this paper to, say, a=0.2 we imply a global reduction of the Bohm
collision frequency, that is vg=(0.035x0.2)®./16=0.007®./16 inside the channel and vg=(1.0x0.2)®./16=0.2m/16
in the near-plume.

The results in Figure